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Abstract 

Tire task of reconstructing the derivative of a discrete fin&on 
is essential for its shading and rendering as well as being widely 
used in image processing and analysis. We survey the possible 
methods for normal estimation in volume rendering and divide 
them into two classes based on the delivered numerical accuracy. 
The three members of the fist class determine the normal in two 
steps by employing both interpolation and derivative jilters. 
Among these is a new method which has never been realized. i%e 
members of the first class are all equally accurate. The second 
class has only one member and employs a continuous derivative 
jilter obtained through the analytic derivation of an interpolation 
jilter. We use the new method to analytically compare the accuracy 
of the jrst class with that of the second. As a result of our analysis 
we show that even inexpensive schemes can in fact be more accu- 
rate than high order methods. We describe the theoretical compu- 
tational cost of applying the schemes in a volume rendering 
application and provide guidelines for helping one choose a 
scheme for estimating derivatives. In particular we jind that the 
new method can be very inexpensive and can compete with the nor- 
mal estimations which pre-shade and pre-classify the volume [8]. 

Keywords: interpolation filters, derivative filters, filter design, nor- 
mal estimation, ‘Ihylor series expansion, efficient volume rendering 

1 INTRODUCTION 

Reconstruction of a continuous function and its derivatives 
from a set of samples is one of the fundamental operations in visu- 
alization algorithms. In volume rendering, for instance, we must be 
able to interpolate the function at arbitrary locations to obtain the 
volume densities. The gradient (the first derivative of the function) 
is employed in both volume classification and shading [3][8]. If the 
gradient estimation is done carelessly, shading and classification 
will yield wrong colors and opacities. Since the derivative’of a 
function indicates the velocity of change of the function values, the 
presence of noise especially will lead to incorrect images [4]. 

There have been various studies and comparisons of accur&e 
interpolation filters, a summary of which is given in [10][12]. 
However, as is also shown in [ 121, the derivative approximation has 
a larger impact on the quality of the Image and therefore deserves a 
thorough analysis, which is the goal of this paper. 

The ideal derivative filter is the Cost filter, which is the deriv- 
ative of the ideal interpolation fiiter (Sine) [1][4]. For a practical 
use of the Sine filter, windowing is suggested [7]. Goss [6] extends 
the idea of windowing from interpolation filters to derivative fil- 
ters. He uses a Kaiser window to mitigate the adverse effects of the 
truncated ideal derivative filter. Bentum et al. [l] use the Cardinal 
cubic splines to develop derivative filters. A good Survey of exist- 
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ing digital derivative filters can be found in the paper by Dutta Roy 
and Kumar [4]. 

While all of the previous work focuses on the design of deriv- 
ative filters, no work is known to us, that tries to conduct a compar- 
ative study of gradient filters. Especially, in the case of volume 
rendering, most algorithms are driven by efficiency considerations 
and may decompose the gradient estimation in one or two steps. 
One step is typically the interpolation of the normals or of the data 
values with a continuous interpolation filter. The other step is the 
application of a digital derivative filter (e.g. central differences) in 
order to cocpute the normal at the sampling location. However, 
there have been schemes proposed, that estimate the normal at an 
arbitrary point in the volume in one step [I]. The goal of this paper 
is to enumerate and classify the different schemes of gradient esti- 
mation and to analyze them in terms of accuracy and efficiency. 

In this paper, we denote byf(t) a continuous function (the sig- 
nal) which is sampled into the discrete functionfi&] =flkLr), where 
Tis the sampling distance and k is an integer. In computer imaging, 
J(t) is not available; we only haveAk]. We denote by h(t) the con- 
tinuous function kernel used for interpolation and by d[k] the digi- 
tal (i.e. only defined for integer arguments) derivative filter. 

We emp1oy.a Taylor series expansion of the convolution sum 
for our numerical analysis, as introduced in [ 121. Our Taylor series 
expansion provides both qualitative and quantitative means of ana- 
lyzing filters. In Section 3, this analysis is expanded to the convo- 
lution of two filters. The methods of [12] are briefly summarized. 

1.1 Tayl.or Expansion of the Convolution 
Sum 
To reconstruct a continuous functionf(t) or its derivative j’(f) 

from d set of sample point.qJ[k], we convolvef[k] with a filter ker- 
nel, i.e. we compute a weighted average of these samples. By con- 
volving the sampled signal fik] with a continuous interpolation 
filter h, we reconstruct an approximation of the original function 
j(t). Similarly, if we convolve the samples with a continuous deriv- 
ative filter d, we reconstruct an approximation of the derivative of 
the original function. We denote the result of this operation by 
f;(t), where w is the filter used. Formally, this can be written as: 

f:“(t) = c f[k]-w(;-k) 

k--m 
(1) 

Now we can expand f[k] = f (k?‘) into a Taylor series about 1. 
The Taylor series expansion at that point would be: 

f[k} = i f~(kZ’-t)“+f(N+“‘k)(k~-t)~~+~) 
n. 

II-0 
(N+ l)! 

where f ‘“‘(0 is the n-th derivative off and & E [t, ki”] 

Substituting the Taylor series expansion into the convolution 
sum of Equation 1, leads to an alternative representation for the 
reconstructed value at a point 1: 



displayable value (e.g., RGBu). N 

f:“(t) = c cqT)f(“)(f) + rg i(z) 
n-0 

a;(T) - f c (k-z)“w(z-k) 

(2) 

or 

r#) = a; + * (z)f’N + ‘J(t) 
where z is chosen such that t = (i -I- z)T , with 0 < z c 1, and i is 
an integer. It is noteworthy that the derived Taylor coefficients a 
and the remainder term r only depend on the offset to the nearest 
sampling point, i.e., they are periodic in the sampling distance T. 
For further details, please refer to [12]. 

The characterization of the filtering process in Equation 2 
imposes 4 different criteria for a, good normal estimation scheme. 
First of ail, we require a$’ to be zero. Secondly we have to normal- 
ize by al in order to reconstruct the actual derivative as opposed 
to a multiple of it. Further by determining the largest N, such that 
UK is zero, we can determine the asymptotic error behavior of a 
filter for a decreasing sampling distance T. Finally, the remainder 
term r gives us an indication of the absolute error of that filter. 

This expansion of the convolution sum assumes that at least 
the first N derivatives of the functionfexist, where N depends on 
our error analysis. This condition is generally met in practice since 
image and volume acquisition devices such as scanners and cam- 
ems inherently perform a low-pass filtering operation that bandlim- 
its the functions [2]. Numerical simulations of physical 
phenomena, as performed in the field of computational fluid 
dynamics, usually generate bandlimited images as well since typi- 
cally robust numerical solutions can be obtained only if the aigo- 
rithm incorporates a smoothing step [15]. Finally, ail rendering and 
scan-conversion algorithms, in order to provide antialiased images, 
usually also employ a filtering step that bindlimits the image. 
Bandlimited functions do not contain frequencies higher then a 
certain limiting frequency in their spectra. One can conclude, that 
bandlimited functions are analytic functions and all N derivatives 
exist. 

The remainder of the paper is organized as follows. In 
Section 2, we summarize the different schemes for normal estima- 
tion. In Section 3, we modify the Taylor series expansion of the 
convolution operation for the specific use of cascading two filters, 
and compare the schemes of Section 2 numerically. In Section 4, 
we examine possible implementations of the normal estimation 
schemes and compare their efficiency. Experimental results are 
also presented in Section 5. Finally, in Section 6, we summarize 
the results of this paper and discuss some open questions. 

2 GRADIENT RECONSTRlkTlON FROM 
THE VOLUME SAMPLES 
We will use the symbol F to represent the discrete function 

flkj. Further, we let D and H denote the derivative and interpola- 
tion’operatom, respectively. In the process of volume rendering 
there are two additional operators applied to the data. The first is 
the trmsferjh/ion, which maps the raw data values into material 
attributes such as color, opacity, and reflectivity. We denote this 
operator, also called clussifcutionfirnction, by C. The second oper- 
ator applied to the data is shading, which illuminates the data. The 
shading operator, which we denote by S, takes as input material 
attributes, light attributes, and the surface normal, and produces a 

Unlike all other methods described in this paper, some nlgo- 
ritfims ([8][3][16]) perform inrerpoiation after classification and 
shading. Normal values are computed at the grid points and classi- 
fication, is also applied to the original data values. Then, these data 
points are shaded. The final RGBa volume is then interpolated at 
the appropriate sampling points. Using our notation, this method 
can be summarized by (((FD)c)s)H. This is indeed an efficient 
method, since CS does not have to be computed for every sample 
point (which is the case for ail other methods described in this 
paper where interpolation is done before CA’) but mther it is com- 
puted only for the:original data points. However, this method will 

produce correct results only if both C and S are linenr opemtors. 
The result of employing a non-linear transfer function or illuminn- 
tion model may, for example, cause the appearance of errors or 
pseudo-features that are nonexistent in the original data, In the 
case of S, one must therefore allow illumination models consisting 
of only ambient lighting. In the case of C, the linearity restriction 
may not be acceptable for many applications. For example, If we 
want to find the opacity in-between two data values a and 6 (using 
linear interpolation), we would find (C(a)tC(b))/2 by performing 
classification first. However we would find C((utb)/2) by perform- 
ing interpolation first. Obviously, if C is a non-linear operator, the 
two results will be different. We therefore concentrate our analysis 
and discussion in the more’ general and accurate methods that per- 
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Since S needs the output of C, shading will always be per- 
formed after classification. Since S needs the function’s derivative, 
it will always be after D. We now present four different ways of 
computing the function derivatives. Except for the fhst approach, 
(FDJH,:in ail others the operators CS will be performed qf?er the 
interpolated derivative has been computed. 

2.1 Method (FD)H - Derivative First 
One way of computing the derivative at a point I of a discrete 

functionflk] is to first compute the normal at the grid points kTand 
then interpolate these normals, producing the derivative at the 
desired location r. This is the method most commonly used in vol- 
ume graphics [6][9]. The first step, the computation of the deriva- 
tive at the grid points, can be expressed in the following 
convolution: 

t--a 
Now the derivative at an arbitrary point can be interpolated ns: 

Square brackets are used to emphasize the discrete nature of the 
operator. Since a convolution in spatial domain is the same ns n 
multiplication in frequency domain, we conclude the following fre- 
quency characterization of the above operation: 

$*(;I - (I;~NW’&JNHW (3) 

Here DD(w) denotes the Fourier transform of the discrete derivn- 
tive filter and F&I) denotes the Fourier transform of the sampled 
functionJk]. The Fourier transform of a discrete function contoins 
replicated frequency spectra at k2rc (where k is an arbitmry inte- 
ger). Therefore. D&II) and F&I)) are periodic functions with 
period 2~. Following the Fourier transform in Equation 3, we will 
refer to this method as (FD)H. 



form CS only after gradient estimation and interpolation. 

2.2 Method (FH)D - Interpolation First 

In this approach, we first reconstruct the continuous function 
Al) from the sampled values fk and then apply the discrete deriva- 
tive filter d [lO][i4]. Since the derivative filter is discrete, we only 
need to evaluate the convolution sum of the interpolated function at 
discrete points. ‘ihe interpolated function $(r) can be expressed 
as a convolution of the samples& using the mterpolation filter h: 

k---a 

The reconstructed derivative can be computed by: 

Using similar arguments as above, we find the Fourier Transform . 
to be: 

F,t$) - (F&)H(o)P&d (4) 

Using our previous notation scheme, we refer to this method as 
method (FH)D. 

2.3Method F(W) - Continuous Derivative 
Looking at all possible combinations of applying the interpo- 

lation filter and the derivative filter to the discrete signal, we ate led 
to a theoretical result. Namely, that we can first convolve the digital 
derivative filter with the continuous interpolation filter. The result 
will be a new continuous derivative filter which we can apply to the 
data samples, enabling us to reconstruct the derivative at any arbi- 
trary point I directly. This can be written as: 

k-4 

where the continuous derivative filter d/z(r) is obtained as the con- 
volution of the digital filter d[k] with the interpolation filter h: 

dh(r) - c d[k] . h(;- k) 

R-4 

We can show that the frequency representation of this process is: 

F:(y) - FDWDDWHW (5) 

therefore referring to this method as F(DH). The benefit of this 
scheme is more conceptual at this moment. In Section 3 we show 
how it can be used for a convenient analysis of the normal estima- 
tion process. Further we will show in Section 4, that this method 
can also be the most efficient to use for volume rendering algo- 
rithms. 

2.4 Method FH’ - Analytic Derivative 

A fourth method to compute the gradient of a discrete fimc- 
tion is to convolve the samplesJk] with the analytical derivative of 
the interpolation filter h: 

./f!‘(t) - i $h’($-k) 

k--a, 

In this case, h’ represents a continuous derivative filter, allowing 
us to reconstruct the continuous derivative P(r) directly from the 
samplesAk] in just one convolution. This is very similar to the pre- 
vious method F(DH). It differs only in the way we construct the 
derivative filter: In method F(DH) we compute a convolution sum 

for the continuous derivativeBfiiter, while in this method we com- 
pute the continuous derivative filter analytically. Bentum et al. [l] 
apply this idea to cardinal spiines, and Marschner and Lobb [ 1 l] 
use this for the BC-splines. The Fourier transform of the derivative 
of a functiou is sim 

% 
iy the scaled Fourier transform of that function 

multiplied by iw (i = -1)[2]. Therefore, we find that the Fourier 
transform of f:‘(t) is: ’ 

F,h’(;) = F,(o@H(u)) 

and we refer to this method as FH’. 

3 NUMERICAL ACCURACY t 
Comparing Equations 3, 4, and 5 we easily find that these 

three methods are numerically equivalent and thus produce the 
exact same reconstructed derivative of $ Therefore, we will con- 
centrate on comparing the methods (FD)H, (FH)D, F(DH) with the 
method FH’ . In order to compare the numerical accuracy of the 
methods, we use the tools developed in [12] and summarized in 
Section 1.1. 

For method FH’ , w in Equation 1 is simply the derivative of 
the interpolation filter h. For other methods, we choose the deriva- 
tive filter described in Section 2.3. To clarify the notationtire will 
replace w by dh. To better compute the coefficients a, (2) of 
Equation,2 for the derivative filter dh, we will substitute the convo- 
lution sum of t&e derivative and interpolation filters into the 
expression for a, (2) in Equation 2: 

U?(T) = 5 i (k-T)“( c d[l].h(r-k-l)) , 
‘k-4 r---a 

which simplifies to: 

a;fT) = 7 Tn c d&f i (k-z)“h(z-k-1) 

Substituting m for ktl in the inner sum, we get 

which resolves to 

c (m-i)‘h(r-m)) 
W-03 

i-0 

This means that the error coefficient of a convolution filter is 
simply the convolution of the error coefficients of both filters. In 
Table 1, we have computed the coefficients for some commonly 
used filter combinations. The first column shows the error coeffi- 
cients for the probably most common used filter combination of 
linear interpolation and central differences, abbreviated by DL. 
Another common choice is the combination of a cubic interpola- 
tion filter (we have chosen the class of cubic cardinal splines) with 
central differences. We let DC denote this filter class. For the class 
of analytic derivative filters we have chosen the derivative of the 
cubic interpolation filter, as introduced in [l]. We use C to repre- 
sent this filter class. 

In the case that a=-0.5, ai is zero for ail three methods and 
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central difference t central difference t 
linear interpolation (DL) cubic interpolation (DC) cubic derivative (C) 

d 
=0 

0 0 0 

d 
=I 

T T T(l t(2a-t 1)(-6t2t6z-1)) 

4 0 -T2(2at i)z(l-z)(l-27) 3T2(2a t 1 )t( 1 - T)( I- 22) 
d 

=3 Tz 

(normalized) 

$1 t32-3z2) 

a--0.5: T a - -0.5 : $(6?-6w 1) 

T2 
z-o:- 

T2 

z = o.56gatg+) 

z-o:- 
6 

Table 1Coefficients for some commonly used filter combinations 

d we must compare h, . One can easily prove that this coefficient for 
DL is always greater than 7?6 (the coefficient for DC), which in 
turn is greater than the coefficient for C. This implies that, the 
worst behavior is observed for DL, and C is more accurate than 
DC. 

Therefore we conclude, that the optimal filter to use is C for 
CL = -0.5. However, one might be interested to use different a in 
different situations. For instance Park and Schowengerdt [ 131 con- 
clude from a frequency study of the cardinal cubic splmes, that 
some CL (different than -0.5) might yield better images. They find 
that a depends strongly on the underlying function to be recon- 
structed. Therefore it is of interest to analyze the spatial error for 
different a as well. 

In the case that a# -0.5, the coefficient for a$ is zero only for 
the method DL. In order to compare the error coefficient among the 
methods DC and C, we compare a$ for both filters. As we have 
pointed out in [12], these coefficients need to be normalized. Fig. 1 
shows a plot of a$ after its normalization. Note that T simply 
scales both plots equally. Therefore, it can~be set to one. In Fig. 1, 
one can clearly see that the error coefficient for DC is smaller than 
the error coefficient for C. Therefore, we conclude that DC is supe- 
rior to C when a# -0.5. This is a rather unexpected result, since 
one would naturally expect the analytic derivative of a filter to be 
more exact and therefore to perform better. As we have just seen, 
this is not necessarily the case. 

We are left to compare the error behavior of the most common 
method DL with the other two methods. Again, for the specini 
cases, where the second coefficient or the second derivative of the 
function go to zero, we must compare a$ in order to find the most 
accurate filter. For the other cases however, we can follow the fol- 
lowing analysis. If we have influence on the original sampling dis- 
tance T for our applications, we can always find a T, such thnt the 
combination of central difference and linear interpolation is supe- 
rior to the other two methods. In other words, DL is asymptotically 
better than DC and C. However in most practical applications we 
are given a data set with fixed sampling distance T. In these cases 
we need to weight the actual error of the filters and conclude from 
this comparison which filter is.more accurate. If we are comparing 
DL and DC, we want to find out for which CL DC performs better 
than DL. Mathematically: 

For the special cases that z = 0 and z = 0.5 (where a$ = 0 ) 
we found by comparing a$, that C is more accurate than DC force 
a E r-3,-0.6]. Another value to consider is the second derivative of 
the underlying function. When it goes to zero, we also have to use 
the error coefficient ai for an error comparison. 

Normalized derivative coefficient a2for DC 
1 

a-C 

I I 
\ 

0 0.2 0.4 0.6 0.8 1 
I 
0 0.2 0.4 0.6 0.8 

Using the second error approximation of Equation 2, we find the 
following criteria: 

We can conclude that the choice of u very much depends on 
the resampiing offset z and the actual data. After some aigebmlc 
manipulations, we can conclude: 

6) 

For a in this range the method DC is more accumte than DL. As 
expected, the choice of the most accurate filter strongly depends on 
the underlying data. 

For a similar comparison of the methods DL and C we find: 

FIGURE 1. In both plots we set T to 1.0. a takes the values 0, -0.2, -0.4; -0.6 -0.8, -1. (a) The coefficient a$ of the central difference 
and cubic interpolation filter for varying a. (b) The normalized coefficient a,d/af of the cubic derivative filter for varying U. 
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1 1 

kif’2’0 +2 
7-5 f'"'(t) I/ I 

ra+0*55-14 f(2)(r) +2 * 

R I 

(7) 

3 f'3'(t> 

An important observation that we draw from Equation 6 and 
Equation 7 is the dependency of the comparative accuracy on the 
sampling distance. The higher the sampling rate the smaller the 
range in which C or DC performs better than DL. This means that 
for densely sampled data sets a combination of linear interpolation 
and central difference is not only efficient, but also recovers the 
derivative accurately. That can also be explained in the frequency. 
domaio. The higher the sampling rate, the further apart the fre- 
quency spectra are placed. In other words, the signal’s aliases are 
more separated. Thus, the deficiencies of the central difference 
operator at higher frequencies do not impose a problem since no 
signal aliases exist in this frequency range. This is an important 
and new result, since it tells us, that for some data sets DL is just as 
accurate, as the other two (more expensive) methods DC and C. 

4 EFFICIENCY CONSlDERAiIONS r 

In this section, we compare the four methods (FH)D, (FD)H, 
F(HD), and FH' from an efficiency perspective. While the first 
three methods are equivalent from an accuracy standpoint, they are 
not so from an efficiency point of view. This section also contrasts 
the overall computational effort of these four shading-deferring 
methods with the demands of the popular, but less accurate, pre- 
shading scheme [8]. We denote this approach as ((FD)CS)H, where 
C and S sbnd for classification and shading that occur after gradi- 
ent computation but before color interpolation. Our comparisons 
will be valid for the 3D case only (a typical application will be vol- 
ume rendering algorithms). If we compare normal estimation 
schemes in other dimensions, our analysis will be similar. 

In the following discussion, we distinguish between imple- 
mentations that compute. all results on-the-fly, and implementa- 
tions that utilize some form of caching to reuse previously 
computed results. The latter approaches obviously requires an 
extra amount of memory and cache management overhead. We 
now introduce some terminology: 

EL: The computational effort to apply the operator h where 1 can 
beH,D,DH, H', or CS. 

1141 :Number of filter weights used for applying the operator h 

n: Nun&.r of data elements (voxels). 

nr: Number of samples. 

For digital filters 17111 is obviously the length of the filter, but 
for continuous filters (e.g. cardinal splines) /?J is usually the filter 
support, i.e. the number of sample values, that are influenced by 
the filter. Since the filter operation is the weighted sum of [Xl ele- 
men&, we usually have EL - 2@\I - 1 for a straight forward 
implementation of llhll multiplications and llq- 1 additions. 
However, for some special filters, there will be a more efficient 
implementation. For instance, the central difference filer (in one 
dimension), can be implemented in 2 operations (one subtraction 
and one division by 2) as opposed to 3 operations (two multiplica- 
tions by 0.5 and one subtraction). Therefore, we find it important to 
separate between E, and IlkI . 

In the following discussion we will discuss the cost of recon- 
structing the function and its derivative at all the sample points. We 
will also comment on the cost of applying the classification and 
shading operators. 

4.1 (FD)H - Derivative First 
In this method, we first compute the gradient at $1 grid voxels 

within the extent of the interpolation filter h, and then interpolate 

23 

these gradients using H. An on-the-fly approach would have to 
compute jH[ gradients for a total cost of ljH&,, followed by 
three interpolations to com’pute the three gradient components and 
one interpolation to compute the data value itself. The total cost is 
thus: 

By storing computed gradienk in a gradient volume, one could 
reduce the cost to: 

n-ED+m(3EH+EH) 

The process- of classification and shading will require additional 
mE,-s cost and the total cost will then be: 

n-ED+n1(4EH+Ecs) 

However, in the ((FD)CS)H method, classification and shading are 
applied to the data values, and the interpolation filter is applied to 
the resulting RGBa values. Therefore, the total cost for this 
method, assuming caching, is: 

Since in most cases, to assure proper sampling, n 5 nt , the 
computational advantage of this method is clear. Moreover, when 
classification and illumination does not change for multiple render- 
ing, the cost of the first component in the last two equations is 
amortized and can therefore be ignored. If we ignore the shading 
component then the cost of reconstructing the function and its 
derivative assuming caching is given by: 

n-ED+nt(4EH) 

4.2 (FH)D - Interpolation First 
The (FH)D method computes the derivative at a ray sample 

location from a set of additionally interpolated samples in the 
neighborhood of the sample location. In parallel (orthographic) 
rendering of volumes the data is resampled into a new grid. If this 
grid is cached somewhere, one can perform the derivative calcula- 
tions using the data values at that grid. 

With& caching, in order to compute the derivative at a sam- 
ple location, (FH)D interpolates nD/ additional samples, each at a 
cost of EH, and uses them to obtain three axis derivatives at the cost 
ED. Another interpolation at fhe sample location, each at a cost of 
EH, yields the function value. The total cost for reconstructing the 
function and its derivative is: 

nz([Dll -.E, + E. + EH) 

Later, these samples are classified and shaded, with an additional 
cost (for the whole volume) of t.v. E,,. However, if caching is 
employed, only one interpolation is needed per sample, and the D 
operator uses only existing samples. Therefore the total cost for 
reconstructing the function and its derivative: 

nlWD + EH) 

4.3 F(M) - Continuous Derivative 
Here the derivative filter is pre-convolved with the interpola- 

tion filter which increases its size. The gradients are then computed 
by convolving the volume by this combined DH-filter. The total 
cost for computing the function and its derivative is then given by: 

ndEDH + EH) 

This is the most direct method of the three methods presented SO 
far and there is no caching mechanism available to gain some 
speedup. 

4.4Method FH’ - Analytic Derivative 
This method is not equivalent to the previous three in terms of 



accuracy, as other sections of this paper demonstrate. FH’ uses a 
special gradient filter derived from the interpolation filter to es& 
mate the gradients. Since this derivative filter has the same size as 
H the corresponding cost for computing the function and its deriva- 
tive is: 

m(EH +&I. 

4.5 Summary and Numerical Examples 
We are now ready to compare the theoretical cost functions 

presented in the previous subsections and provide some numerical 
examples to highlight the differences. Table 2 lists all costs derived 
above and gives two numfrical examples: In case 1, H and H' are 
cubic filters (~~H~~ - 4 ), D is a central differenge filter 
(@A - 6 ), and in case 2, H is a triliiear filter (11Hll = 2 ) and D 
is again the central difference filter. For the following discussion 
we count the number of floating point operations associated with 
each operator, but we do not distinguish between additions, multi- 
plications or diyisions. In this case, the cost of EH for H being 
cubi 5 is 2.4 -1 - 127, of EH for H being trilinear is 
2.2 -1 = 15 , of E. for D being central difference the cost is 6. 
Since the derivative filters are directional filters, and EDH denotes 
the cost of computing all three derivative components, we find that 
EDH is three times the. cost of one derivative component operation. 
In order to find the directional derivative, we convolve the interpo- 
lation filter of size s-s-s = s 3 with a ID derivative filter of 
length k (in our case - central differences - k = 2). That results in a 
filter of size (s + k- I). s . s . Therefore we find the cost of EDH 
for If being cubic is 477 and for H being trilinear is 69. 

As expected the analytical derivative method (FH’) is the 
most efficient one. However, as we showed in Section 3, it is not 
necessarily the most accurate. Among the other three schemes 
(which are numerically identical), we find our new method 
(F(DH)) most efficient if there is no caching. However, if caching 
is available, (FH)D is certainly the most efficient way to compute 
the normal and the data value at this point. Therefore, we conclude 
that in terms of efficiency and in terms of accuracy, there is no need 
for the most commonly used method (FD)H (in the case of 
deferred shading). As was pointed out already in Section 4.1, if we 
do shading at the grid locations, we might find a more efficient 
algorithm, yet trading speed for accuracy. 

5 EXPERIMENTS 

The images were rendered employing a simple raycaster to 
find isosurfaces.The volumes were resampled at an interval of 0.05 
voxel lengths. At each sampling point, the raycaster first applied 
the interpolation kernel to reconstruct the, function at that point. If 
the reconstructed value was above a pre-set isovalue, the derivative 
filter was used to compute the 3D gradient. Shading was then per- 
formed using the traditional Phong lighting model [S] with diffuse 
and specular reflections. The obtained color and opacity were com- 
posited with the previous ray values, and the ray was terminated 
after the opacity reached a value close to one. Since for all our iii- 
ters both the interpolation and the derivative kernel were separable, 
the filter operations could be efficiently performed using a scheme 
similar to the one given by Bentum et al [I]. 

For our experiments we used an analytic data set, derived 
from the same function as the one used by Marschner and Lobb 
[Ill. Specifically, we used: 

J(x,y, 2) = ~-~sin@.)+~cos(l2rrcos~.J~)) 

Since we study different derivative filters, we have fixed the 
interpolation filter to be the Catmull-Rom interpolation filter - a 

cubic filter with small error as was also shown in [ 121. From Equa- 
tions 6 and 7 we learn that the range of a where C and/or DC per- 
forms better than DL is dependent on the data set. lb address this 
issue, we have computed the ratio [f(3)(f)/f(2)(r)! analytically 
for the data points for the three axis directions x, y, and z, where we 
reconstruct and collected them in a histogram, plotted in Fig. 2. In 
order to guarantee that all data points are reconstructed more accu- 
rately using DC (or C) than DL,‘we would have to choose the min- 
imal ratio. This ratio is zero and therefore we can conclude that 
only for a - -0.5 we can guarantee, that the derivative reconstruc- 
tion at any single point will be better for the methods DC and C as 
opposed to DL. In order to get 
higher ratio of lft3)(r)/ft2)(1) ip 

ractical results, we could choose a 
, giving up on the accuracy assur- 

ante for some reconstructed values. If we for instance choose the 
ratio 7, we still guarantee all z directional derivatives to be esti- 
mated more accurately. Approximatly 8% of the directional deriva- 
tives in y will be more accurate by DL, and only 3.8% of the 
directional derivatives in x will be better by DL. 

When we plug in the ratio of 7 into Equations 6 and 7, we Rnd 
the theoretical result that for a E [-0.78,-0.221, DC performs better 
than DL and for a E r-0.65,-0.34], C performs better than DL, 
These theoretical ranges have steered our experiments and in Fig. 3 
(see color plates) we have rendered the Marschner-Lobb data set 
for several different a. For a better (analytical) understanding of 
these rendered images, we have also drawn the angular error 
images in Fig. 4. For each reconstructed normal we computed the 
actual normal and recorded their angular difference. The grey 
value.of 255 was displayed for an angular error of 5 degrees. 

For the first row of images we have used a - -0.5. Following 
our analysis in Section 3, we expect that E(C) < E(DC) < &(DL), 
where E(A) denotes the error measure of image A. The first row of 
Fig. 3 shows the different images for a - -0.5. Although the differ- 
ences are small, one can find DC to be better, than DL. Although 
the image for DC is overall smoother, it’s error image in Fig. 4 
reveals a much higher error than for C. 

The images for a - -1.0 show the opposite behavior. From our 
analysis we deduce the following error behavior: 
a@L) < E(DC) <E(C). From Fig. 3 we conclude, that C clearly is 
the worst image. Also a visual comparison of DC and DL leads to 
the conclusion, that DL is better than DC. The error images in 
Fig. 4 support this analysis. 

. The rows for a = -0.6 and a = -0.7 show rather a tmnsitional 
phase. Since the change of the filter weights happens continuously, 
we cannot necessarily expect a sudden sharp change in the image 

SOOOO.Ol 
I 

FIGURE 2. The ratio of llft3)(r)/ft2)(r)~ for the dlrectional 
derivatives in x, y, and z direction respectively for the 
Marschner Lobb data set. 

24 



Theoreticat Cost 

I No Caching I Cachina 

I Flf’ I mWH) I 
-_- 

‘Ibble 2. Comparison of efficiency of the normal estimation schemes 

quality. The differences in the image quality can be better studied 
using the error images in Fig. 4. We can conclude, that for a = -0.6 
our results follow our theoretical analysis: a(DC) c a(C) < &(DL). 
However, for a = -0.7 it is debatable, which method is preferable 
in terms of image quality. Analytically we show 
E(DC) < &(DL) < E(C). It is clear, that the image for C is the least 
appealing to the viewer. 

6 CONCLUSIONS AND FUTURE GOALS 
We have classified the different techniques of normal estima- 

tion into four groups, and we have developed a new scheme 
F(DH). We showed that the schemes (FD)H, (FH)D and F(DH) are 
numerically equivalent, and then extended the idea of classifying 
filters using Taylor series expansion to the convolution of two fil- 
ters, We found that computing the analytic derivative of a filter ker- 
nel (method FH’) is not always more accurate than using a 
combination of that filter with the central difference kernel (any of 
the methods FDH). Therefore, a careful analysis of existing filters 
and filter combinations is suggested. 

The new scheme F(DH) opens up new ways to design contin- 
uous derivative filters. Furthermore, this method of normal estima- 
tion is also the second most cost-efficient one, if no caching is 
performed (with FH’ being the most cost effective one). However, 
if caching is enabled, then the method (FH)D is clearly preferable 
over any other method in terms of efficiency. In fact, what is 
believed as one of the most commonly used methods, (FD)H, is 
one of the slowest normal estimation method. The only advantage 
one could gain is the precalculation of the shading operation at the 
grid voxels, as Levoy [8] has proposed it. However, as was pointed 
out in Section 2, this method is certainly not preferable if accu- 
rately rendered images are required. 

One of our immediate goals is to compare various combina- 
tions of known derivative and interpolation filters in order to find 
new derivative filters. We also would like to extend the error analy- 
sis to frequency space so that we can examine any aliasing and 
smoothing errors. Finally, it would contribute to the accuracy of 
our analysis to include a noise model. We also believe that it is 
very important to further investigate the shading and classification 
steps in terms of numerical accuracy. 
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FIGURE 4. Error images of the Marschner Lobb images in Fig. 3 (xc colorplates) 
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